The PDZ-Binding Motif of HPV16-E6 Oncoprotein Modulates the Keratinization and Stemness Transcriptional Profile In Vivo
نویسندگان
چکیده
Objective The aim of this work was to compare the early gene expression profiles in the skin of HPV16-E6 transgenic mice regulated by the E6 PDZ-binding motif. Materials and Methods The global transcriptional profiles in dorsal skin biopsies from K14E6 and K14E6Δ146-151 transgenic mice were compared using microarrays. Relevant genes obtained from the most differentially expressed processes were further examined by RT-qPCR, in situ RT-PCR, Western blot, or immunofluorescence. Results The transcriptomic landscape of K14E6 versus K14E6Δ146-151 shows that the most affected expression profiles were those related to keratinocyte differentiation, stem cell maintenance, and keratinization. Additionally, downregulation of epidermal stemness markers such as K15 and CD34, as well as the upregulation of cytokeratin 6b, appeared to be dependent on the E6 PDZ-binding motif. Finally, wound healing, a physiological process linked to stemness, is impaired in the K14E6 mice compared to K14E6Δ146-151. Conclusion The E6 PDZ-binding motif appears to affect stemness and keratinization during early stages of skin carcinogenesis. As E6 plays a significant role in HPV-induced skin carcinogenesis, the K14E6 versus K14E6Δ146-151 transcriptional profile provides a source of valuable data to uncover novel E6 functions in the skin.
منابع مشابه
In silico analyzing the molecular interactions of plant-derived inhibitors against E6AP, p53, and c-Myc binding sites of HPV type 16 E6 oncoprotein
Human papillomaviruses (HPV) are a group of strong human carcinogen viruses considered to be the fourth leading cause of mortality among women in the world. HPV is the most important cause of cervical cancer, which is the second most common cancer in women living in low and middle-income countries. To date, there is no effective cure for an ongoing HPV infection; therefore, it is required to in...
متن کاملProtein tyrosine phosphatase H1 is a target of the E6 oncoprotein of high-risk genital human papillomaviruses.
The E6 proteins of high-risk genital human papillomaviruses (HPV), such as HPV types 16 and 18, possess a conserved C-terminal PDZ-binding motif, which mediates interaction with some cellular PDZ domain proteins. The binding of E6 usually results in their ubiquitin-mediated degradation. The ability of E6 to bind to PDZ domain proteins correlates with the oncogenic potential. Using a yeast two-h...
متن کاملHuman papillomavirus type 8 E6 oncoprotein inhibits transcription of the PDZ protein syntenin-2.
The E6 proteins from high-risk alpha human papillomavirus (HPV) types (e.g., HPV16) are characterized by the presence of a PDZ-binding motif through which they interact with a number of cellular PDZ domain-containing substrates and cooperate in their degradation. The ability of these E6 proteins to bind to PDZ domain proteins correlates with the oncogenic potential of the virus. The E6 proteins...
متن کاملAn RNA Aptamer Targets the PDZ-Binding Motif of the HPV16 E6 Oncoprotein
Human papillomavirus 16 (HPV16) is a high-risk DNA tumour virus which is the primary causative agent of cervical cancer. Cell transformation arises from deregulated expression of the E6 and E7 oncogenes. E6 has been shown to bind a number of cellular proteins, including p53 and proteins containing a PDZ domain. This study reports the first RNA aptamers to E6. These have been employed as molecul...
متن کاملRole of the PDZ domain-binding motif of the oncoprotein E6 in the pathogenesis of human papillomavirus type 31.
A number of PDZ domain-containing proteins have been identified as binding partners for the oncoprotein E6 of the high-risk type human papillomaviruses (HPVs). These include hDlg, hScrib, MAGI-1, MAGI-2, MAGI-3, and MUPP1. The PDZ domain-binding motif (-X-T-X-V) at the carboxy terminus of E6 is essential for targeting PDZ proteins for proteasomal degradation. The presence of this motif only in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017